HIGH PERFORMANCE, LOW LATENCY 3D SENSOR NETWORK FOR LIVE FULL OBJECT RECONSTRUCTION

C. Munkelt, M. Heinze, <u>T. Zimmermann</u>, P. Kühmstedt, G. Notni

Dimensional Optical Metrology and Inspection for Practical Applications VII, Orlando, 18th April 2018

Fraunhofer Institute for Applied Optics and Precision Engineering IOF

Albert-Einstein-Str. 7 07745 Jena, Germany

Motivation

- Continuous 3D capture for monitoring
 - Simultaneous 3D calculation and processing
- Combination of multiple sensors for full object reconstruction:
 - Occlusion-free monitoring (assembly, in-line quality control)
 - Human-Machine-Interaction (including medical application areas)

Contents

- 3D sensor network system architecture
- Calibration approach
- Measurement examples
- Three sensor system characterization
- Summary

3D sensor network system architecture

Active pattern projection of aperiodic sinusoidal fringes in stereo setup¹:

Detection of corresponding points by normalized temporal cross-correlation

Slide 4

¹⁾ S. Heist, A. Mann, P. Kühmstedt, P. Schreiber, G. Notni: Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement, Opt. Eng. 53(11), 112208 (2014) © Fraunhofer IOF

3D sensor network system architecture

- GoBo-based near infrared (NIR) pattern projection¹⁾:
 - Irritation-free: fringes are invisible (@ 850nm)

Slide 5 ¹⁾ Heist © Fraunhofer IOF

¹⁾ Heist, Stefan; Lutzke, Peter; Schmidt, Ingo; Dietrich, Patrick; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther: High-speed three-dimensional shape measurement using GOBO projection, Optics and Lasers in Engineering 87, 2016

3D sensor network system architecture (three sensors)

- Dual Gigabit Ethernet links for up to 230 Megapixel / s 2D image rate
- 10 Gigabit Ethernet Switch as uplink concentrator for up to 10 cameras per offthe-shelve PC dual port Ethernet card
- Online 3D calculation using **GPU-based vendor-neutral** OpenCL code

Calibration approach – intrinsic

- Intrinsic calibration via photogrammetry / bundle block adjustment
 - 2000+ markers using ArUco¹⁾ marker encoding
 - Multiple calibration images with uniform NIR-lighting
 - Bundle block adjustment for precise camera parameter determination

Slide 7 © Fraunhofer IOF

¹⁾ S. Garrido-Jurado, R. Munoz-Salinas, F.J Madrid-Cuevas, M.J. Marín-Jiménez: Automatic generation and detection of highly reliable fiducial markers under occlusion; ArUco; <u>https://www.uco.es/investiga/grupos/ava/node/26</u>; Pattern Recognition (2014)

Calibration approach – extrinsic

- Calibration target: ball bar connected with cylinder
- Three sensors \rightarrow Three 3D-views
- Step by step using knowledge:
 - 1. Sphere center points
 - 2. Ball bar length
 - **3.** Cylindrical axis
 - 4. Any inner cylindrical point on axis

Three sensor system characterization

Three sensors, continuous data stream:

- 10 fps (@ 2 megapixel)
- End to end latency: ~90 ms ... ~150 ms
- Sphere: Average distance to average sphere center σ :
 - Three sensors: $\sigma = 0.10$ mm

Measurement examples (1)

Underlying 2D image

Single 3D reconstruction

Slide 11 © Fraunhofer IOF

Measurement examples (2)

- Object dimensions:
 570 x 1850 x 320 mm³
- Measuring field:
 - 600 x 2000 x 400 mm³

💹 Fraunhofer IOF

Slide 12 © Fraunhofer IOF

Summary

- We have shown a 3D scanning system with:
 - Continuous data stream with three sensors with 10 fps @ 2 megapixel
 - Several synchronized 3D sensors in a smart system architecture
 - Simultaneous calculation and processing of 3D data
 - Low latency measurements with high measurement accuracy
 - Measurement of a complete human body with irritation free fringes

...GameChanger in Photonics

Three sensor system characterization

Single sensor, continuous data stream:

- 10 fps (with 2 megapixel)
- End to end latency: ~90 ms ... ~150 ms
- Sphere: Average distance to average sphere center σ :
 - Sensor 1: σ = 0.07 mm
 - Sensor 2: $\sigma = 0.09$ mm
 - Sensor 3: σ = 0.10 mm

Slide 15

Calibration approach - extrinsic

Simulation based on standard deviation of fitted/measured data:

- **1.** Sphere center points: standard deviation $\sigma = 200 \mu m$
- 2. Ball bar length: depending on 1.
- **3**. Cylindrical axis: $\sigma = 0.001^{\circ}$ (equal to 300 µm deviation within cylinder)
- **4**. Any inner cylindrical point on axis: $\sigma = 300 \mu m$
- **10,000 runs** each (i.e. with and without optimization)

Calibration approach – extrinsic								
			with optimization		without optimization			
			deviation		deviation		2.	
			standard	maximal	standard	maximal		
	sphere 1	1.	0.034	0.166	0	0	mm	
	sphere 2	2.	0.033	0.162	< 1e-12	< 1e-12	mm	
Cylinder	inner point	3.	0.073	0.450	0.0780	0.501	mm	
	frontal point	4.	0.074	0.388	0.099	0.512	mm	
	rear point	5.	0.073	0.358	0.121	0.670	mm	
	axis	6.	0.013	0.070	0.011	0.046	0	

